CBSE Class 12 Physics 2026: Electrostatics + Current Electricity (Top 20 Most Expected Q &A with Solutions)

 CBSE Class 12 Physics के Electrostatics और Current Electricity के सबसे महत्वपूर्ण 20 सवाल–जवाब, formulas, derivations और numericals के साथ। Q1) Coulomb’s Law लिखिए और SI unit बताइए। Solution: F = 1 4 π ε 0 q 1 q 2 r 2 F=\frac{1}{4\pi\varepsilon_0}\frac{q_1q_2}{r^2} F = 4 π ε 0 ​ 1 ​ r 2 q 1 ​ q 2 ​ ​ F F F की unit: Newton (N) ε 0 \varepsilon_0 ε 0 ​ : permittivity of free space Force line joining charges के along होता है। Q2) Point charge के कारण Electric Field का सूत्र (vector form)। Solution: E ⃗ = 1 4 π ε 0 q r 2 r ^ \vec E=\frac{1}{4\pi\varepsilon_0}\frac{q}{r^2}\hat r E = 4 π ε 0 ​ 1 ​ r 2 q ​ r ^ दिशा: + q +q + q से बाहर, − q -q − q की तरफ। Q3) Electric Flux की परिभाषा और unit। Solution: Φ E = E ⃗ ⋅ A ⃗ = E A cos ⁡ θ \Phi_E=\vec E\cdot \vec A = EA\cos\theta Φ E ​ = E ⋅ A = E A cos θ Unit: N   m 2 / C N\,m^2/C N m 2 / C Q4) Gauss Law लिखिए। Solution: ∮ E ⃗ ⋅ d A ⃗ = Q e n c ε 0 \oint \vec E\cdot d\vec A=\frac{Q_{enc}}{\varepsilon_0} ∮ E ⋅ d A...

CBSE Class 12 Physics 2026: Top 100 High-Yield Questions (Full Solutions/Steps) – Board Score Booster Set

 UNIT-1: Electrostatics (Q1–Q10)

1) Coulomb’s Law likho aur vector form बताओ।



Force line joining charges ke along hota hai; like charges repel, unlike attract.

2) Electric field due to point charge निकालो।




3) Dipole ka electric field on axial line?
Solution (main steps): Dipole moment p=q(2a)p=q(2a).
Axial point distance rar\gg a:
Direction: dipole moment ke along (from − to +).

4) Dipole ka field on equatorial line?


Direction: p\vec p ke opposite.

5) Gauss law statement + formula.

Solution:
Closed surface se total flux:



6) Infinite plane sheet (surface charge density σ\sigma) ka E-field?

Solution: Using Gauss (pillbox):

Two sides par equal magnitude.

7) Infinite line charge (linear density λ\lambda) ka E-field at distance r?

Solution: Cylindrical Gaussian surface:

E(2πrL)=λLε0E=λ2πε0rE(2\pi rL)=\frac{\lambda L}{\varepsilon_0}\Rightarrow E=\frac{\lambda}{2\pi\varepsilon_0 r}

8) Conducting sphere (charge Q, radius R) ka potential outside/inside?

Solution:
Outside (rR)(r\ge R):

V=14πε0QrV=\frac{1}{4\pi\varepsilon_0}\frac{Q}{r}

Inside conductor (rR)(r\le R): constant

V=14πε0QRV=\frac{1}{4\pi\varepsilon_0}\frac{Q}{R}

9) Capacitance of parallel plate capacitor (air) and with dielectric k.

Solution:

C=ε0Ad,C=kε0Ad=kCC=\frac{\varepsilon_0A}{d},\qquad C'=\frac{k\varepsilon_0A}{d}=kC

10) Energy stored in capacitor derive.

Solution:

✅ UNIT-2: Current Electricity (Q11–Q20)

11) Ohm’s law + V–I graph.

Solution: V=IRV=IR. V–I straight line, slope = R.

12) Resistivity ρ definition + relation with R.

Solution:

R=ρLA,ρ=RALR=\rho\frac{L}{A},\quad \rho=\frac{RA}{L}

Unit: Ωm\Omega\,m

13) Temperature dependence: R=R0(1+αΔT)R=R_0(1+\alpha \Delta T) meaning.

Solution: α\alpha=temperature coefficient. Metals: α>0\alpha>0.


14) Series–parallel resistors equivalent.

Solution:
Series: Rs=R1+R2+R_s=R_1+R_2+\cdots
Parallel: 1Rp=1R1+1R2+\frac1{R_p}=\frac1{R_1}+\frac1{R_2}+\cdots


15) Kirchhoff’s laws लिखो।

Solution:
Junction: I=0\sum I=0
Loop: ΔV=0\sum \Delta V=0

16) Wheatstone bridge balanced condition.

Solution:

PQ=RS\frac{P}{Q}=\frac{R}{S}

Galvanometer current zero.


17) Meter bridge formula (unknown X, known R).

Solution: Balance length ll:

XR=l100lX=Rl100l\frac{X}{R}=\frac{l}{100-l} \Rightarrow X=R\frac{l}{100-l}

18) Potentiometer principle + emf comparison.

Solution: Potential gradient k=V/Lk=V/L.

E1E2=l1l2\frac{E_1}{E_2}=\frac{l_1}{l_2}


19) Drift velocity and current relation.

Solution:

I=nAevdI=nAe v_d

Current density J=nevdJ=ne v_d.


20) Power in resistor.

Solution:

✅ UNIT-3: Moving Charges & Magnetism (Q21–Q30)

21) Lorentz force formula.

Solution:

F=q(E+v×B)\vec F=q(\vec E+\vec v\times \vec B)


22) Force on current-carrying conductor.

Solution:

F=I(L×B),F=BILsinθ\vec F=I(\vec L\times \vec B),\quad F=BIL\sin\theta


23) Magnetic field at center of circular loop (N turns, radius R).

Solution:

24) Long straight wire field at distance r.

Solution:

B=μ0I2πrB=\frac{\mu_0 I}{2\pi r}


25) Solenoid field inside (turn density n).

Solution:

B=μ0nIB=\mu_0 n I

(air core)


26) Cyclotron: frequency & maximum energy idea.

Solution:

f=qB2πmf=\frac{qB}{2\pi m}

(Max speed when radius hits max rr: v=qBrmv=\frac{qBr}{m})


27) Torque on magnetic dipole in uniform B.

Solution:

τ=m×B,τ=mBsinθ\vec \tau=\vec m\times \vec B,\quad \tau=mB\sin\theta

28) Moving charge in uniform B—circular motion radius.

Solution:

qvB=mv2rr=mvqBqvB=\frac{mv^2}{r}\Rightarrow r=\frac{mv}{qB}


29) Biot–Savart law statement.

Solution:

dB=μ04πIdl×r^r2d\vec B=\frac{\mu_0}{4\pi}\frac{I\,d\vec l\times \hat r}{r^2}


30) Ampere’s circuital law.

Solution:

✅ UNIT-4: Magnetism & Matter (Q31–Q40)

31) Magnetic susceptibility χ, relation with M and H.

Solution:

M=χH\vec M=\chi \vec H


32) Relation between B, H, M.

Solution:

33) Dia/Para/Ferro ka behavior?

Solution:
Diamagnetic: χ<0\chi<0, weakly repelled.
Paramagnetic: χ>0\chi>0, weakly attracted.
Ferromagnetic: very large χ\chi, strongly attracted, domains.


34) Earth’s magnetic elements: declination, dip, horizontal component.

Solution:
Declination: geographic N vs magnetic N angle.
Dip: B with horizontal angle.
BH=BcosIB_H=B\cos I.


35) Tangent law (deflection magnetometer).

Solution:

tanθ=BBH\tan\theta=\frac{B}{B_H}


36) Bar magnet as dipole: axial field formula.

Solution:

Baxial=μ04π2mr3B_\text{axial}=\frac{\mu_0}{4\pi}\frac{2m}{r^3}


37) Equatorial field of bar magnet.

Solution:

Beq=μ04πmr3B_\text{eq}=\frac{\mu_0}{4\pi}\frac{m}{r^3}

38) Hysteresis loop significance.

Solution: Retentivity, coercivity, energy loss (area).


39) Soft iron vs steel (use).

Solution: Soft iron: low coercivity—electromagnets.
Steel: high retentivity—permanent magnets.


40) Magnetic moment of current loop.

Solution:

✅ UNIT-5: EMI (Q41–Q50)

41) Faraday’s laws.

Solution:
Induced emf proportional to rate of change of flux:

ε=dΦdt\varepsilon=-\frac{d\Phi}{dt}


42) Lenz’s law meaning.

Solution: Induced current change ko oppose karta hai (minus sign).

43) Self-inductance L definition.

Solution:

Φ=LI,ε=LdIdt\Phi=LI,\quad \varepsilon=-L\frac{dI}{dt}


44) Energy in inductor.

Solution:

U=12LI2U=\frac12 LI^2

45) Motional emf in rod length l moving with v in B.

Solution:

ε=Blv\varepsilon=Blv

(when v ⟂ B and rod ⟂ v)


46) Eddy currents—uses & losses.

Solution: Uses: braking, induction furnace. Loss: heating; reduce by laminations.


47) Transformer: relation between voltages.

Solution:

VsVp=NsNp\frac{V_s}{V_p}=\frac{N_s}{N_p}

48) Transformer power (ideal).

Solution:

VpIp=VsIsV_pI_p=V_sI_s

49) AC generator principle.

Solution: Rotating coil, changing flux ⇒ ε=ε0sinωt\varepsilon=\varepsilon_0\sin\omega t.


50) Fleming’s right-hand rule use.

Solution: Generator direction (induced current).


✅ UNIT-6: AC (Q51–Q60)

51) RMS value of AC current.

Solution:

Irms=I02,Vrms=V02I_\text{rms}=\frac{I_0}{\sqrt2},\quad V_\text{rms}=\frac{V_0}{\sqrt2}

52) Reactance of inductor/capacitor.

Solution:

XL=ωL,XC=1ωCX_L=\omega L,\quad X_C=\frac1{\omega C}

53) Impedance of series RLC.

Solution:

Z=R2+(XLXC)2Z=\sqrt{R^2+(X_L-X_C)^2}

54) Resonance condition.

Solution:

XL=XCω0=1LCX_L=X_C\Rightarrow \omega_0=\frac1{\sqrt{LC}}

55) Power factor.

Solution:

cosϕ=RZ\cos\phi=\frac{R}{Z}

Power: P=VrmsIrmscosϕP=V_\text{rms}I_\text{rms}\cos\phi

66) Mirror formula.

Solution:

1f=1v+1u\frac1f=\frac1v+\frac1u

67) Lens formula.

Solution:

1f=1v1u\frac1f=\frac1v-\frac1u

68) Magnification (lens).

Solution:

m=hh=vum=\frac{h'}{h}=\frac{v}{u}

69) Power of lens.

Solution:

P=1f(in meter), unit: diopterP=\frac1f(\text{in meter}),\ \text{unit: diopter}

70) Lens maker formula.

Solution:

1f=(μ1)(1R11R2)\frac1f=(\mu-1)\left(\frac1{R_1}-\frac1{R_2}\right)

71) Total internal reflection conditions.

Solution:

  1. denser → rarer

  2. incidence angle > critical angle

sinC=n2n1\sin C=\frac{n_2}{n_1}

72) Optical fiber working.

Solution: Repeated TIR, light guided.


73) Refraction at spherical surface formula.

Solution:

n2vn1u=n2n1R\frac{n_2}{v}-\frac{n_1}{u}=\frac{n_2-n_1}{R}

74) Prism deviation at minimum deviation.

Solution (main):

n=sin(A+Dm2)sin(A2)n=\frac{\sin\left(\frac{A+D_m}{2}\right)}{\sin\left(\frac{A}{2}\right)}

75) Combination of lenses in contact.

Solution:

1F=1f1+1f2P=P1+P2\frac1F=\frac1{f_1}+\frac1{f_2}\Rightarrow P=P_1+P_2

✅ UNIT-9: Wave Optics (Q76–Q85)

76) Young’s double slit fringe width.

Solution:

β=λDd\beta=\frac{\lambda D}{d}

77) Conditions for bright/dark fringes.

Solution:
Bright: Δ=nλ\Delta=n\lambda
Dark: Δ=(2n+1)λ2\Delta=(2n+1)\frac{\lambda}{2}

78) Diffraction vs interference (1 line difference).

Solution: Diffraction: single slit/aperture; interference: two coherent sources.


79) Single slit diffraction: angular width of central maxima.

Solution:
Minima: asinθ=mλa\sin\theta=m\lambda.
Central max width 2λa\approx \frac{2\lambda}{a} (in radians small angle)


80) Polarisation proves transverse nature.

Solution: Only transverse waves polarise; light polarises ⇒ transverse.


81) Brewster law.

Solution:

taniB=n\tan i_B=n


82) Malus law.

Solution:

I=I0cos2θI=I_0\cos^2\theta


83) Rayleigh scattering—blue sky.

Solution: Scattering 1λ4\propto \frac1{\lambda^4} ⇒ blue more scattered.


84) Doppler effect in light? (basic)

Solution: Frequency shift due to relative motion; used in astronomy.


85) Coherent sources condition.

Solution: Same frequency, constant phase difference.


✅ UNIT-10: Dual Nature (Q86–Q90)

86) Photoelectric equation.

Solution:

Kmax=hνϕK_\text{max}=h\nu-\phi

Stopping potential: eV0=KmaxeV_0=K_\text{max}


87) Threshold frequency.

Solution:

ϕ=hν0ν0=ϕh\phi=h\nu_0 \Rightarrow \nu_0=\frac{\phi}{h}

88) de Broglie wavelength.

Solution:

λ=hp=hmv\lambda=\frac{h}{p}=\frac{h}{mv}


89) Electron accelerated by V: wavelength.

Solution:

eV=12mv2p=2meVλ=h2meVeV=\frac12mv^2 \Rightarrow p=\sqrt{2meV} \Rightarrow \lambda=\frac{h}{\sqrt{2meV}}


90) Davisson–Germer experiment conclusion.

Solution: Electron diffraction observed ⇒ matter waves exist.


✅ UNIT-11: Atoms & Nuclei (Q91–Q97)

91) Bohr’s angular momentum quantisation.

Solution:

mvr=nh2πmvr=\frac{nh}{2\pi}


92) Hydrogen energy levels.

Solution:

En=13.6n2 eVE_n=-\frac{13.6}{n^2}\ \text{eV}


93) Radius of nth orbit.

Solution:

rn=a0n2, a0=0.529 A˚r_n=a_0 n^2,\ a_0=0.529\ \text{Å}

94) Nuclear radius relation.

Solution:

R=R0A1/3, R01.2×1015 mR=R_0 A^{1/3},\ R_0\approx 1.2\times 10^{-15}\text{ m}


95) Binding energy definition.

Solution: Mass defect Δm\Delta m:

B.E=Δmc2B.E=\Delta m\,c^2

Per nucleon stability indicator.


96) Radioactive decay law.

Solution:

97) Half-life formula.

Solution:

T1/2=ln2λ=0.693/λT_{1/2}=\frac{\ln 2}{\lambda}=0.693/\lambda


✅ UNIT-12: Semiconductors + Communication (Q98–Q100)

98) p-n junction forward vs reverse bias.

Solution: Forward bias barrier कम ⇒ current flows. Reverse bias barrier बढ़ ⇒ tiny leakage.


99) Zener diode use.

Solution: Reverse breakdown me constant voltage देता ⇒ voltage regulator.


100) Modulation क्यों जरूरी? AM basics.

Solution: Low-freq signal direct transmit नहीं (antenna huge, noise). Carrier wave पर modulation. AM: carrier amplitude varies with signal.

Comments

Popular posts from this blog

CBSE Class 12 Physics 2026: Electrostatics + Current Electricity (Top 20 Most Expected Q &A with Solutions)

CBSE 2026 Biology: Most Important Short Questions (With Answers)

CBSE 2026 Class 11 Physics: Questions (With Answers)